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Abstract
A new general method is presented which allows one to find all distinct Voronoi
and Delone tiles in any quasicrystal from a large family. This includes the tiles
which may be present with arbitrarily low density >0. At all stages, the method
requires only consideration of a (possibly large) finite number of cases. Our
method is applicable, in principle, to quasicrystals in any dimension and with
any irrationality.

This is the first of three papers where the Voronoi and Delone tilings are
studied. Two-dimensional point sets, ‘quasicrystals’, arising from the A4-root
lattice by means of the standard projection to a two-dimensional plane with
the irrationality τ = 1

2 (1 +
√

5), are considered. In general, we require that
the acceptance window be bounded with non-empty interior. Specific results are
provided here for rhombic acceptance windows of any size oriented along the
direction of simple roots of the Coxeter group H2. Within one quasicrystal the
tiles are distinguished by their shape, size and orientation. The rhombic window
case is indispensable for subsequent classification of Voronoi and Delone tiles
in quasicrystals with general shape of the acceptance window. Voronoi and
Delone tiles of quasicrystals with circular and decagonal windows of any size
are given in subsequent papers.

Let VT denote the set of distinct Voronoi tiles making up a quasicrystal
with a given acceptance window. There are three VT sets of the ‘generic’ type
and three of the ‘singular’ type. The latter occur for one precise value of the
size of the acceptance window. Any other VT set is a uniform scaling of the
tiles listed here. Similar results, differing in detail, are provided for the sets of
distinct Delone tiles DT. Altogether there are four different sets DT of Delone
tiles.
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PACS number: 61.44.Br

1. Introduction

Uniform tiling of an Euclidean plane R2 by a small number of distinct tiles has a history
stretching back centuries, indeed millennia. For a long time all such tilings were periodic.
Only in recent decades have uncountable families of aperiodic tilings become known [6, 23]. In
this paper we are concerned with a pair of tilings (Voronoi and Delone tiling), arising naturally
from aperiodic point sets commonly used as idealized models of physical quasicrystalline
materials; hence for simplicity we call such sets quasicrystals here.

The quasicrystals in this paper belong to a large family of infinite point sets which are
deterministic, lack any translationally invariant subsets, and are uniformly dense and uniformly
discrete. The sets arise through a well-known process called the cut-and-project method,
starting from a higher dimensional lattice. The projection introduces a certain irrationality
into the coordinates of the points and the cut is determined by a chosen bounded region called
an acceptance window.

Voronoi domains and/or their duals, Delone domains, of a discrete point set in Rn are
used in diverse and often unrelated fields as is witnessed by their different names: Dirichlet
domains, proximity cells, Wigner–Seitz cells, Brillouin zones and so on. Each field has its
specific applications and problems related to the properties of the particular set of points which
defines the domains [21].

For the study of physical properties of quasicrystalline materials, e.g. electron conductivity
or interatomic interactions, knowledge of local configurations of particles in the material is
essential. In a mathematical model of quasicrystals, one thus needs to define neighbours of a
point in the point set. In one dimension the notion of neighbours is clear. In two dimensions
and higher, a natural definition of neighbours uses Voronoi domains of the modelling point
set. Voronoi domains of all its points then form a perfect tiling of the space. For construction
of the Delone domains meeting in the point X, one also needs to know about the second
nearest neigbours of X or adjacent Voronoi tiles. In some problems one may need to know
local configurations involving the third, fourth and higher neighbours or, equivalently, larger
clusters of Voronoi and/or Delone tiles. Adaptation of our method to such problems is
straightforward but requires more computing. In physics, the most interesting applications
are found in two and three dimensions, n = 2, 3. In coding theory higher dimensions are also
encountered. Among the papers that have focused on the description of local configurations
in quasicrystal models are [1, 2, 4].

Our goal here is to describe and to exemplify a method of determining complete lists
of distinct Voronoi and Delone tiles found in a cut-and-project point set with the acceptance
window of a given shape, denoted here by VT and DT respectively. It is known that such a list
is finite for all the quasicrystals we consider, and that corresponding tiles, Voronoi or Delone,
are convex polygons. It turns out that a more general problem can be solved at the same time,
namely to find VT and DT in the case that the acceptance window is of a given shape and of
any size.

Classification of distinct Voronoi and Delone tiles in a given point set � is rarely an
easy task in dimension n > 1, even if one considers only deterministic sets with long range
order. The problem has some interesting aspects even in periodic cases where there is just one
shape of Voronoi/Delone tiles when the dimension of the space exceeds 3. The description of
faces of all dimensions becomes a challenging tasks. For example, the Voronoi tiles of root
lattices of simple Lie groups were described only a decade ago [18, 19, 26, 27].
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The present paper is the first of a series of three papers [13, 14]. Its goal is twofold:
(i) to describe a new rigorous and rather general approach to the problem, and (ii) to provide a
complete answer to the problem for a family of specific cases, namely two-dimensional cut-
and-project point sets with the acceptance window of the shape of an equilateral parallelogram
of any size. Interest in this case is more than just a curiosity. Its solution is indispensable for
solving the classification problems in the case of an acceptance window of general shape. In
subsequent papers, VT and DT are found where the acceptance window is a circular disk [13]
and a regular pentagon [13] of any size.

The discovery of quasicrystals in 1982 [25] incited greater interest in aperiodic tilings
with pentagonal (or icosahedral) symmetries [3, 8, 9, 22]. Some of the simplest aperiodic
tilings, such as the Penrose pentagonal quasicrystals, are out of our consideration here: they
are neither Voronoi nor Delone type, although they sometime can be cut further to become
such. In a number of cases properties of related point sets, such as cut-and-project point sets,
are not available in the literature.

There is an uncountable number of deterministic pentagonal quasicrystals, arising in
the so-called cut-and-project method, for which the Voronoi and Delone domains have never
been completely listed before, although properties of their local configurations have often been
considered and partial lists frequently compiled from a finite size fragment(s) of a quasicrystal.
Such compilations provide only crude information about the relative density of different tiles,
and no information whatsoever about the change of the density as a function of the size of the
acceptance window. In particular, no singular two-dimensional tiling, occurring just for one
size of the window, has apparently been noted before.

Within the Voronoi or Delone tiling of a given quasicrystal, two tiles are considered
distinct if either their shapes, or sizes, or orientations are different. Tiles of the same shape but
different size are always present. Various orientations of the same tile can often be described
more succinctly by the symmetry properties of the acceptance window.

One of the results of this paper, as well as of [13, 14], is the conclusion that, in the most
common family of such two-dimensional quasicrystals, Voronoi tiles with very low density
are not exceptional. In fact, it is easy to point out any number of quasicrystals containing
Voronoi and/or Delone tiles with densities >0, but still lower than any value fixed in advance.
Consequently, one cannot conclude that a list of distinct tiles is complete if it was obtained
from an observation of a finite fragment of the quasicrystal point set. Hence a different
rigorous approach is needed. Based on the properties of the cut-and-project method, one can
find a procedure to determine all Voronoi domains which occur in a given quasicrystal. The
problem requires a new approach as well as demanding computer verification of a crucial finite
set of cases.

The strategy of the method consists in first considering the one-dimensional quasicrystals.
Consequently, we can easily solve the case of a two-dimensional quasicrystal given
as a Cartesian product of two one-dimensional quasicrystals, here for simplicity called
‘quasilattice’. Finally, the general problem becomes a finite one by suitable embedding
of the general quasicrystal into a quasilattice and embedding of another quasilattice into the
general quasicrystal.

Specific quasicrystals (cut-and-project point sets), considered here, are a result of the
standard projection of points of the root lattice of type A4 onto a two-dimensional subspace
oriented in such a way that the irrationality τ = 1

2 (1 +
√

5) arises. The relevant subgroup of
the Coxeter group of A4 is H2. Thus we say that we consider only the quasicrystals of type
H2. The acceptance window in this paper is either a rhomb oriented along two roots of H2,
or a general bounded convex window with non-empty interior. The quasicrystal with rhombic
acceptance window is the quasilattice mentioned above. It turns out that there are precisely six
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sets of Voronoi tiles, V Tj , j = 1, . . . , 6 and four sets of Delone tiles DTk, k = 1, . . . , 4 and
their uniform scalings by τm (m ∈ Z), which occur in quasicrystals with a rhombic window of
any size. The number of Voronoi tiles that are of different shape and size (but not orientation!)
and appear simultaneously in a single tiling, varies from 4 to 12. The analogous numbers for
the Delone tilings are 4 and 8.

It turns out that the acceptance window is divided into regions corresponding to different
types of tiles. The area of a region determines the relative density of the corresponding tile
in the tiling. Depending on the particular setup of the boundaries (open × closed) of the
acceptance window, there can appear tiles with zero density with the corresponding region in
the acceptance window of dimension <2. In this paper, we are interested in describing the
tiles with positive density and therefore we consider the boundary of the rhombic acceptance
window semi-closed; in this case the tiles of zero density do not appear.

There is an interesting analogy between the singular and nonsingular quasicrystals in two
dimensions in this paper, and respectively the well-known two- and three-tile quasicrystals in
one dimension, assuming that they have a connected segment for their acceptance window. In
order to explain this analogy for quasicrystals of any dimension, we assume that the acceptance
window is of fixed shape, convex, connected and of dimension n, and that its size is specified
by a real number d. Furthermore, we assume that we can always find the set VT and/or DT of
distinct Voronoi or Delone tiles in the quasicrystal. Consider now the sets VT and/or DT as
functions of d, for 0 < d � ∞. The sets, which remain unchanged for a finite (open) interval
of values of d, form nonsingular tilings. Two different nonsingular sets are separated by a
singular one which corresponds to an isolated value of d only.

After the mathematical preliminaries in section 2, we recall in section 3 properties of
one-dimensional quasicrystals. Most of them are generally known. New and crucial for our
method is proposition 3.6. In section 4 one finds a technically indispensable result, which is of
some independent interest. It is the classification of V T and DT sets of tiles for quasicrystals
formed as the product of two one-dimensional quasicrystals, i.e. quasilattices. The results are
summarized in figures 3 and 4.

In section 5 we describe the method of determining all tiles of the Voronoi, respectively
Delone, tiling of a given quasicrystal with general acceptance window. The method requires
solution of a finite but very large problem. Subsequently, we intend to apply the method to
quasicrystals with circular and decagonal acceptance windows [13, 14].

2. Preliminaries

2.1. Cut-and-project maps

Quasicrystal models considered in this paper are constructed using the well-known cut-and-
project scheme. Let L be a crystallographic lattice in R2n. Let V1 and V2 be two n-dimensional
subspaces of R2n and let π1, π2 be projections π1: R2 → V1 and π2: R2 → V2 which satisfy
the following:

(1) π1 restricted to L is an injection.
(2) π2(L) is dense in V2.

The scheme is illustrated in the following picture:

L

∪

R2n

V1 V2

π π1 2

*
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In this scheme π1(L) and π2(L) are additive Abelian groups. The bijection between
them, π2 ◦ π−1

1 , was named the star map in [5] (because in the case L = A4 it twists a regular
pentagon of H2 roots into a five-pointed star).

The cut-and-project scheme is rather general. In this paper, we focus on the special case
of two-dimensional quasicrystals with tenfold symmetry. An algebraic formalism defining
the cut-and-project scheme explicitly is found in [16]. In order to be specific, we provide the
relation between points of the root lattice L(A4) of the Coxeter group A4 and the root lattices
L(H2) = π1(L(A4)) and L∗(H2) = π2(L(A4)), the two copies of the root lattice of H2 in R4,
denoted by V1 and V2 respectively in the picture above.

Let τ = 1
2 (1 +

√
5), τ ′ = 1

2 (1 − √
5). We denote by Z[τ ] the set Z[τ ] = Z + Zτ . It is the

ring of integers of the quadratic extensionQ[
√

5] of rational numbers Q. The ring is dense in R.
The Galois automorphism, denoted by ′ on Q[

√
5], is defined by x = a + bτ �→ x ′ = a + bτ ′

for a, b ∈ Q. The Galois automorphism is an everywhere discontinuous map.
Let us fix in R4 bases, consisting of lattice vectors, and identify them by the corresponding

Gram matrices:

L(A4) :




2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2


 L(H2) :

(
2 −τ

−τ 2

)
L∗(H2) :

(
2 −τ ′

−τ ′ 2

)
.

We denote the bases respectively by {γ1, . . . , γ4}, {α1, α2} and {α∗
1 , α

∗
2 }. Thus the first two

bases consist of simple roots of A4 and H2 respectively, while α∗
1 and α∗

2 are roots of H2 but
not simple ones. Determinants of the Gram matrices are frequently present in our calculation,
so that it is useful to introduce special symbols for their square roots:

�∗ =
√

4 − τ 2 =
√

2 + τ ′ and � =
√

4 − (τ ′)2 =
√

2 + τ . (1)

The determinant of the Gram matrix of A4 is equal to 5.
Following [16], we can write a generic point X ∈ L(A4) as follows,

X =
4∑

k=1

ckγk = c1 + τc3

�
α1 +

τc2 + c4

�
α2 +

c1 + τ ′c3

�∗ α∗
1 +

τ ′c2 + c4

�∗ α∗
2

where c1, . . . , c4 ∈ Z. More generally, we can take c1, . . . , c4 ∈ Q, replacing the lattices L by
the corresponding Z[τ ]-modules. Explicitly, the bases are related as follows:

γ1 = 1

�
α1 +

1

�∗ α∗
1 γ2 = τ

�
α2 +

τ ′

�∗ α∗
2 γ3 = τ

�
α1 +

τ ′

�∗ α∗
1 γ4 = 1

�
α2 +

1

�∗ α∗
2

α1 = 1

�
(γ1 + τγ3) α2 = 1

�
(τγ2 + γ4) α∗

1 = 1

�∗ (γ1 + τ ′γ3) α∗
2 = 1

�∗ (τ ′γ2 + γ4).

2.2. Quasicrystal definition

Mathematical models of quasicrystals arising in such a cut-and-project scheme are explicitly
defined using the algebraic formalism introduced in [16]. For our purposes it suffices to
formulate the definition for quasicrystals in two dimensions, i.e. for the case of H2.

An essential tool of the definition as well as of practical construction of the quasicrystals
is the star map acting between the subspaces V1 and V2. More precisely, we have the ‘star
map’ as follows:

∗ : M = L(H2) ←→ M∗ = L∗(H2)

x = x1α1 + x2α2 ←→ x∗ = x ′
1α

∗
1 + x ′

2α
∗
2 x1, x2 ∈ Z[τ ].

Note that M and M∗ are dense in R2 and the star map is everywhere discontinuous.
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Definition 2.1. Let � ⊂ R2 be a bounded set with non-empty interior. The cut-and-project
quasicrystal is the set

�(�) = {x ∈ M | x∗ ∈ �} (2)

where � is called the acceptance window.

2.3. Properties of quasicrystals

Let us recall some useful properties of �(�). The first one is the Delone property of �(�).
It means that �(�) is (i) uniformly discrete, i.e. there exists r > 0 such that |x − y| � r

for every x, y ∈ �(�), x �= y, and (ii) relatively dense, i.e. there exists 0 < R < ∞ such
that every ball of radius R contains at least one point of �(�). The minimal R satisfying
(ii) is called the covering radius of �(�), and we denote it by Rc. Roughly speaking, the
Delone property ensures that the points of �(�) are spread more or less uniformly in the
entire plane.

Another interesting property of cut-and-project quasicrystals is the limited number of
distinct local configurations of their points. There are finitely few configurations of any given
size [15]. More precisely, given ρ > 0 the family of sets

(�(�) − x) ∩ B(0, ρ) for all x ∈ �(�)

is finite. Here B(z, r) denotes the ball of radius r centred at z.
Under some additional requirements on �, the quasicrystal �(�) is repetitive; that is,

every finite pattern (a subset of points) of its points occurs infinitely many times in �(�). A
sufficient condition for that to happen is that the boundary of � has an empty intersection with
the module M∗ = M . Otherwise points of the boundary (or their absence in the quasicrystal)
may cause unique occurrence of certain configurations in the quasicrystal. We will later
illustrate this phenomenon in the simple example of one-dimensional quasicrystals.

All occurrences of a given pattern P ⊂ �(�) are found in the following way. Let x be a
point of the pattern, x ∈ P ⊂ �(�). The connected region �P ,

�P = {y∗ ∈ � | y∗ − x∗ + P ∗ ⊂ �}
describes all possible shifts of P ∗ inside �. Then one has y − x + P ⊂ �(�).

The density of occurrence of any fixed finite pattern P of �(�) is defined as the limit of
the ratio of the number of points x such that x + P ⊂ �(�) in a ball of radius ρ, as ρ tends to
infinity. It is a consequence of results in [17] that the density is proportional to the volume of
the region �P relative to the volume of the entire window �.

2.4. Voronoi and Delone cells

The Voronoi cell of a point x ∈ �(�) ⊂ R2 consists of all the points of R2 that are closer to
x than to any other point of �(�),

V (x) := {z ∈ R2||z − x| � |z − y| for every y ∈ �(�)}
Thus every Voronoi cell contains precisely one quasicrystal point. It follows from the properties
of cut-and-project quasicrystals that the Voronoi cell of every point of �(�) is a closed convex
polygon.

It has been proved (for example in [24]) that the Voronoi cell V (x) is determined by points
of �(�) within the distance of 2Rc from x, i.e.

V (x) = {z ∈ R2||z − x| � |z − y| for every y ∈ �(�) ∩ B(x, 2Rc)} (3)
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where B(x, r) denotes the ball of radius r centred at x. This, together with the fact that there is
only a finite number of local configurations of a given size, implies that there are only finitely
many distinct Voronoi cells, up to a shift.

Voronoi cells of points in �(�) form a perfect tiling of R2: they fit side by side without
overlaps and without unfilled space. A boundary is shared by the adjacent cells. One can
naturally define adjacent points in �(�) by saying that points x and y are adjacent precisely if
their Voronoi cells share a common edge. Connecting all the adjacent pairs of points in �(�),
one derives the dual or Delone tiling of R2. The vertices of one Delone tile are those points of
�(�) whose Voronoi tiles share a common vertex. This vertex is the centre of the excircle of
the Delone tile. Let us now mention some details about perfect tilings.

2.5. Tessellations of an Euclidean space

Voronoi and Delone tilings of a plane are examples of tessellations of an Euclidean space Rn

by a collection T of closed convex tiles. It is useful to underline some of the general properties
that tessellations are endowed with. In this paper we are interested only in the case n = 2.

Elements (tiles) X,Y ∈ T are said to be neighbours,provided X �= Y and their intersection
X ∩ Y is non-empty of dimension m (0 � m � n − 1). We denote the neighbour relation and
its negation respectively by

X
m� Y (0 � m � n − 1) X �/ Y.

It is symmetric,

X � Y ⇐⇒ Y � X

for any m, and non-reflexive

X �/ X (X is not its own neighbour).

For any X ∈ T , the set N1(X) of its first neighbours is finite,

N1(X) =
n−1⋃
m=0

Nm
1 (X) Nm

1 (X) = {Y ∈ T | Y
m� X}.

Here n is the dimension of the Euclidean space. Consequently, higher order neighbours are
also finite. They are naturally introduced recursively:

Nm
k+1(X) =

⋃
Y∈Nm

k (X)

Nm
1 (Y ).

The tessellation T is connected because one has

T =
∞⋃

k=1

Nn−1
k (X) for any X ∈ T .

Distance d(X, Y ) between X,Y ∈ T is introduced as follows:

d(X, Y ) = k k ∈ N0 for all X ∈ T Y ∈ Nn−1
k (X) Nm

0 (X) := {X}.
Thus T becomes a metric space.

In the Voronoi tiling of a Delone set we may identify the tile with the corresponding
centre, i.e. there is a one-to-one correspondence between points and their Voronoi cells. Thus
we can define neighbours Nk(x), where x is a point in the Delone set.
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3. One-dimensional quasicrystals

For our task we need first to bring together some,generally known, facts about one-dimensional
cut-and-project quasicrystals and to complete them by proposition 3.6.

The definition of a one-dimensional quasicrystal �(I) is the simplest special case of (2).
For the acceptance window we have a bounded interval I ⊂ R. We define

�(I) := {x ∈ Z[τ ] | x ′ ∈ I }. (4)

The distances between adjacent points of �(I) are called tiles. They are determined by
differences between points of I. Hence �(I) can be viewed either as a tiling of the real axis,
or as a sequence of the points (endpoints of the tiles).

Many facts about one-dimensional quasicrystals are known. First of all, �(I) is a Delone
set and thus its elements are naturally ordered into an increasing sequence (yn)n∈Z.

Proposition 3.1 ([11]). Let I be a bounded interval. Then

τ k�(I) = �(τ ′kI ) k ∈ Z. (5)

Hence a rescaling of I by an integer power of τ ′ implies the rescaling of the tiles of
�(I) by the same power of τ . Thus (5) allows one to restrict the consideration to one-
dimensional quasicrystals whose acceptance interval I has its length |I | within a finite range,
say, τ−1 < |I | � 1. Any other quasicrystal can be brought to this case by a suitable rescaling
according to (5).

Subsequently, we assume that I is a semi-closed interval. This requirement is sufficient
for the corresponding one-dimensional quasicrystal to be a repetitive set. Note that
adding/removing a boundary point may add/remove only one point of the quasicrystal. Had
we considered the acceptance interval I closed or open, while both boundary points are in
Z[τ ], we would encounter configurations which occur only once in the entire quasicrystal
(i.e. have zero density).

Proposition 3.2 ([11]). Let I = [c, c + d) be an interval of length τ−1 < d � 1. Let
�(I) = {yn | n ∈ Z}, where (yn)n∈Z increases. If d = 1 then the distances yn+1 − yn, n ∈ Z,
take two values, τ and τ 2. If τ−1 < d < 1, then the distances yn+1 − yn, n ∈ Z, take three
values τ , τ 2 and τ 3.

It is useful to introduce a stepping function f that allows one to determine the neighbour
of a point x ∈ �(I) according to the position of x ′ in I.

Proposition 3.3. Let I = [c, c + d) be an interval of length τ−1 < d � 1. Let �(I) =
{yn | n ∈ Z}, where (yn)n∈Z is an increasing sequence. Define f : I → I by

f (x) :=



x + τ ′2 for x ∈ [c, c + d − τ ′2)
x + τ ′3 for x ∈ [c + d − τ ′2, c − τ ′)
x + τ ′ for x ∈ [c − τ ′, c + d).

(6)

Then f (y ′
n) = y ′

n+1.

The acceptance window I = [c, c + d) is thus divided by the discontinuity points
α = c + d − τ ′2, β = c − τ ′ of f into a disjoint union of three subintervals. The position of y ′

n

with respect to three discontinuity points determines which of the three values the difference
yn+1 − yn takes.

Using proposition 3.2, one can identify every one-dimensional quasicrystal with a
symbolic sequence (tn)n∈Z in a three-letter alphabet, say {S,M,L}, standing for short (S),
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middle (M) and long (L). More precisely, if (yn)n∈N is the increasing sequence of the
quasicrystal �(I), τ−1 < |I | � 1, then we put

tn =



S if yn+1 − yn = τ

M if yn+1 − yn = τ 2

L if yn+1 − yn = τ 3.

(7)

Infinite ‘words’, associated with quasicrystals �(I), are aperiodic, but reveal a certain
level of ordering. One of the restrictive properties is their complexity. The complexity of a
symbolic sequence is a function C : N → N that assigns to n ∈ N the number of different
blocks ti ti+1 . . . ti+n−1 of length n occurring in the sequence. The complexity of sequences
derived from one-dimensional quasicrystals is linear, i.e. far less than C(n) = 3n as one would
expect from a random sequence in the three-symbol alphabet {S,M,L}. More precisely, we
recall the following statement.

Proposition 3.4 ([7]). Let Cd be the complexity function of the infinite word derived from the
one-dimensional quasicrystal �(I) with I = [c, c + d), and let f be the step function (6):

• If d /∈ Z[τ ], then

Cd(n) = 2n + 1 for n ∈ N.

• If d ∈ Z[τ ], then there exists a unique k ∈ N0 such that f (k)(a) = b or f (k+1)(b) = a,
where a, b are the discontinuity points of f . Consequently,

Cd(n) =
{

2n + 1 for n � k

n + k + 1 for n > k.

Similarly as the discontinuity points a, b of f determine the occurrence of letters of certain
type (words of length 1), the discontinuity points of the nth iteration f (n) of f determine the
occurrence of words of length n in the infinite word. These discontinuity points divide the
interval I into Cd(n) subintervals, each one of them corresponding to one word of length n
(n consecutive letters).

The density of a particular n-tuple w = uiui+1 . . . ui+n−1 in the infinite word (tn)n∈N is
given by


w = lim
k→∞

|{i ∈ Z ∩ (−k, k) | ti ti+1 . . . ti+n−1 = w}|
2k − 1

(8)

if the limit exists. For the case of the infinite word (tn)n∈N of a one-dimensional quasicrystal
�(I) the density is always well defined and it is proportional to the length of the subinterval
of I corresponding to the chosen n-tuple. Since we consider I to be a semi-closed interval, all
n-tuples have non-zero density and therefore are repeated infinitely many times in the word
(tn)n∈Z.

The set of distinct words

Ln(d) = {ti ti+1 . . . ti+n−1 | i ∈ Z} (9)

which are present in the infinite word (tn)n∈Z, associated with one-dimensional quasicrystal
�(I), I = [c, c + d), does not depend on the position of the acceptance window I, but only
on its length. The complexity function is by definition the number of elements in that set,
C(n) = |Ln(d)|. For example, L1(d) is equal to the alphabet {S,M,L} so that we have
C(1) = 3.

Our final aim in this section is to find out how much we can change d = |I | without
changing the set Ln(d). An answer is given in proposition 3.6. First however, we prove the
following lemma.
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Lemma 3.5. Let τ−1 < d � 1 and I = [c, c + d). Let n ∈ N. Then there exist d1 and d2 such
that τ−1 � d1 < d < d2 � 1 and

Ln(d) ⊂ Ln(d̃) for all d1 < d̃ < d2.

Proof. Let ti ti+1 . . . ti+n−1 ∈ Ln(d). This n-tuple corresponds to a sequence of (n + 1)

points, say yj , yj+1, . . . , yj+n in �(I) = {yk | k ∈ Z}, where (yk)k∈Z is increasing. Since
yj , yj+1, . . . , yj+n all belong to �(I), we must have

max{y ′
j , y

′
j+1, . . . , y

′
j+n} − min{y ′

j , y
′
j+1, . . . , y

′
j+n} < d.

Strict inequality is a consequence of the fact that I = [c, c + d) is not a closed interval.
Similar inequalities hold for all other n-tuples in Ln(d). Altogether we thus have Cd(n) strict
inequalities for d. Clearly, we can find d1 < d that will satisfy these inequalities also. This
implies that all n-tuples in Ln(d) are contained in Ln(d1) and also in Ln(d̃) for all d1 < d̃ < d .

Let us now show that we can also enlarge the acceptance window without losing an
n-tuple. Suppose that there is an n-tuple ti ti+1 . . . ti+n−1 ∈ Ln(d) that is not in Ln(d̃) for any d̃ .
It means that any enlarging of the acceptance window would destroy all occurrences of this
n-tuple, i.e. a new point would be added between points of any (n+ 1)-tuple yj , yj+1, . . . , yj+n

which correspond to the word ti ti+1 . . . ti+n−1. Since this is true for any enlarging, it follows
that even adding the right endpoint to the acceptance interval I = [c, c + d) must break all
of the infinitely many occurrences of the n-tuple. This cannot be done by adding a single
point and thus we arrive at a contradiction. Consequently, there must exist a d2 > d such that
Ln(d) ⊂ Ln(d̃) for all d < d̃ < d2. �

Using the above lemma, we can prove the following statement.

Proposition 3.6. Let n ∈ N be fixed. Denote by Cd the complexity function of the infinite word
derived from the one-dimensional quasicrystal �(I) with I = [c, c + d). Define

Dn = {d | τ−1 < d � 1, Cd(n) < 2n + 1}.
Then elements of Dn divide the interval (τ−1, 1] into a finite disjoint union of subintervals,
such that Ln(d) is constant on each of these intervals.

Proof. First we have to show that Dn is a finite set. In order to determine its elements, we use
proposition 3.4. We start by recalling that the complexity of �(I) is the same for all positions
of I. Thus we can assume I = [0, d). For given n ∈ N, we have to solve the equations

f (k)(a) = b or f (k+1)(b) = a k � n for a = d − τ ′2 b = −τ ′. (10)

Note that in these equations d ∈ Z[τ ] is unknown and f is also unknown, since it depends
on d. However, f is piecewise linear with slope 1 and thus, for a fixed k ∈ N, there are only
finitely many different prescriptions for f (k). The equation therefore can be solved and has
only finitely many solutions d ∈ Z[τ ].

Next select a d ∈ (τ−1, 1), such that d /∈ Dn. This means that Cd(n) = 2n + 1. From
lemma 3.5 we know that there exists an open interval containing d, such that Ln(d) is a subset
of Ln(d̃) for all d̃ in the interval. Clearly, since |Ln(d)| = Cd(n) = 2n + 1, the inclusion is in
fact an equality Ln(d) = Ln(d̃). So let us take the maximal open interval with that property,
(d1, d2). In other words, no d3 < d1 has the property that Ln(d) �⊂ Ln(d̃) for any d̃ ∈ (d3, d).
Similarly, no d4 > d2 has the property that Ln(d) �⊂ Ln(d̃) for any d̃ ∈ (d, d4).

Let us first consider d1. We want to show that d1 ∈ Dn. Assume that this is not the
case. Then Cd1(n) = 2n + 1. According to lemma 3.5 there exists a d5 < d1 < d6 such
that Ln(d1) ⊂ Ln(d̃) for any d̃ ∈ (d5, d6). Since Cd1(n) = 2n + 1, we have Ln(d1) = Ln(d̃)
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for any d̃ ∈ (d5, d6). But (d5, d6) and (d1, d) have a non-empty intersection. Necessarily
Ln(d1) = Ln(d) = Ln(d̃) for all d̃ ∈ (d6, d). However, this is a contradiction with the fact
that (d1, d2) was the maximal interval.

Thus we have shown that d1 ∈ Dn. In a similar way we can also prove d2 ∈ Dn. This
implies that Ln(d) remains constant on the subintervals of (τ−1, 1) determined by Dn. �

Proposition 3.6 is used extensively in the next section for computation of singular cases
of one-dimensional quasicrystal. For this one-dimensional quasicrystals need to be divided
according to different elements of L4(d), the set of different words of length 4. It is done by
solving equations (10), where d is the unknown length for k = 0, 1 and 3. For such small
values of k, it is not difficult to compute the values of d manually. There are the following
solutions:

f (0)(a) = f (0)(b) = a = b for d = 1
f (2)(a) = b for d = 3τ − 4
f (2)(b) = a for d = 4 − 2τ.

(11)

Thus we have three singular cases d = 1, d = 3τ − 4 and d = 4 − 2τ , where the complexity
of the words of length 4 is lower than 2n + 1 = 2 × 4 + 1 = 9.

4. Classification of Voronoi clusters of quasilattices

An indispensable step in our considerations is the study of the simplest cases of two-
dimensional cut-and-project quasicrystals, namely those which are the Cartesian product
of two one-dimensional quasicrystals. For simplicity of their identification, we call them
quasilattices here.

Let {α1, α2} be a basis in the space V1 of the quasicrystal; its star map {α∗
1 , α

∗
2 } is the

corresponding basis in V2, the space of the acceptance window. From the definition of
cut-and-project quasicrystals, it is easy to see that if the acceptance window � is given by
� = Iα∗

1 +Iα∗
2 for a bounded semi-opened interval I, then the corresponding two-dimensional

quasicrystal �(�) can be written as

�(�) = �(I)α1 + �(I)α2. (12)

To be specific, we take {α1, α2} to be the simple roots of H2, and {α∗
1 , α

∗
2} to be their star maps

[5]. Realizing both the space of the quasicrystal and the space of the acceptance window as
complex planes, we can set

α1 = 1 α2 = e2π i/5 and α∗
1 = 1 α∗

2 = e4π i/5.

4.1. Voronoi tilings

In order to determine the Voronoi cells, one needs to know, according to (3), the covering
radius of the quasicrystal point set. Recall the following known results, see e.g. [28].

Proposition 4.1. Let I be a semi-opened bounded interval of length d ∈ (τ k, τ k+1]. The
covering radius of the quasilattice �(�) for � = Iα∗

1 + Iα∗
2 is equal to

Rc = τ 2−k

√
τ + 2

.

For practical construction of the Voronoi tiling it is advantageous to use another result:
for determination of the Voronoi cell of a chosen point of �(�), it suffices to consider only
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its first and second neighbours in the quasilattice. More precisely, we have the following
proposition.

Proposition 4.2. Let I be a semi-opened bounded interval and let �(I) = {yn | n ∈ N},
where (yn)n∈N increases. Let � = Iα∗

1 + Iα∗
2 . For the Voronoi domain V (x) of the point

x = ykα1 + y�α2 ∈ �(�) it holds that

V (x) = {z ∈ R2| |z − x| � |z − y| for every y ∈ �(�) ∩ S}
where

S = {yiα1 + yjα2 | k − 2 � i � k + 2, � − 2 � j � � + 2}.

Proof. The proof of the above statement is constructed by inspection of a finite number of
cases according to the following scheme.

First recall that, due to the rescaling property (5), it suffices to consider the acceptance
window sides of length |I | between two consecutive integer powers of τ . We choose
τ−1 < |I | � 1. For this case we have Rc = τ 3/

√
τ + 2.

Next we want to estimate the size of rhombic fragment of the quasicrystal, oriented
along α1 and α2, which would cover any disc of radius 2Rc centred on any point of the
quasicrystal. Using simple geometrical formulae we get that the length of side of this
rhombus is 8τRc/

√
τ + 2. It implies that we need one-dimensional sections of length at

least 8τ 4/(τ + 2). More precisely, we need to find the smallest even n such that

∀d ∈ (1/τ, 1] ∀t1 . . . tn ∈ Ln+2(d) �⇒ |t1 . . . tn/2+1| > 4τ 4/(τ + 2)

|tn/2+2 . . . tn+2| > 4τ 4/(τ + 2).

Taking the shortest tiles S, we obtain an upper estimate for n. However, we know that
sequence SS does not occur in quasicrystals, therefore a better estimate is obtained from
SMSM . This gives n = 3. One has approximately |SMS| .= 5.8541 and the approximate
value of 4τ 4/(τ + 2) is 7.577 71. If we add one more M to the end we get the length
approximately 8.472 14. Hence 6-tile words should be investigated. (Subsequent case-by-
case investigation has shown that only 4-tile words determine the shape of the Voronoi tiles.)

We proceed by generating all possible sequences of the length 6 spaces which may appear
in any one-dimensional quasicrystal �(I) for which 1/τ < |I | � 1. This is done by applying
the basic rules which forbid sequences that cannot occur in any quasicrystal, namely

SL,LS, SS,LLL,MML,LMM,MLMLML,MLMLMM,
(13)

LMLMLM,MMLMLM,MSMSMSMS, SMSMSMSM.

Non-forbidden configurations were inspected by computer and in all cases only two neighbours
on each side were necessary.

One may think that only the first neighbours suffice to determine the shape of a Voronoi
tile. In many cases that is true. However, it is not difficult to find, by direct inspection of
tilings, examples of Voronoi tiles determined by the first and the second neighbours. �

The Voronoi tiles of two quasilattices are the same, if distinct 4-tuples in the corresponding
one-dimensional quasicrystals coincide. More precisely, let I1 and I2 be bounded intervals
such that L4(|I1|) = L4(|I2|). Let �1 = I1α

∗
1 + I1α

∗
2 and �2 = I2α

∗
1 + I2α

∗
2 . Then the set

of different Voronoi cells of �(�1) and �(�2) are the same. The quasilattices �(�1) and
�(�2) differ only by the relative density of occurrence of Voronoi cells and by their tiling
arrangements.
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Figure 1. The positions of singular cases V T2, V T4 and V T6 and DT2,DT4 within the range
(1/τ, 1] of side lengths of the rhombic acceptance windows are shown. The figure is drawn to
scale. Between two Voronoi/Delone singular cases the sets of Voronoi/Delone tiles do not change,
only the relative density and arrangement of tiles in the tiling vary.

Table 1. The cases of quasicrystals with rhombic acceptance windows—quasi–lattices—specified
by the sets of Voronoi and Delone tiles are given. There are six classes of quasicrystals
V Tm,m = 1, . . . , 6, which have different Voronoi tiles. The second and fourth columns contain
the number of Voronoi and Delone tiles in the corresponding tiling. Sets V T2, V T4 and V T6 are
singular and they tile the quasicrystals with a specific size of window side; its length is shown in
the middle column. There are only four sets of Delone tiles DTm,m = 1, . . . , 4 for quasicrystals
with a rhombic acceptance window.

V T1 12 8 DT1

V T2 8 2/τ 2 6 DT2

V T3 12

V T4 10 (τ + 2)/τ 3 6 DT3

V T5 12

V T6 4 1 4 DT4

Different sets L4(d) of 4-tuples in one-dimensional quasicrystals, as functions of the
length d of the acceptance interval, are found using proposition 3.6, as was explained at the
end of the previous section. Thus we find that one-dimensional quasicrystals split into six
mutually exclusive types, according to the sets of local configurations (equivalently Voronoi
tiles) they contain. Consequently, we can identify six types of two-dimensional quasilattices,
according to the Voronoi tiles they generate. Three of them are singular in that they occur for
a precise value of |I |, the length of the window-interval, three others are nonsingular, having
|I | within a finite range. More precisely, we obtain

V T1 : |I | ∈ (τ−1, 4 − 2τ ) V T2 : |I | = 4 − 2τ

V T3 : |I | ∈ (4 − 2τ, 3τ − 4) V T4 : |I | = 3τ − 4
V T5 : |I | ∈ (3τ − 4, 1) V T6 : |I | = 1.

(14)

Results of (14) are shown in table 1 and figure 1 together with analogous information
about the dual (Delone) tilings.

4.2. Delone tilings

So far we have been concerned about tiling of the Euclidean plane R2 by Voronoi tiles generated
by a given quasilattice or, more generally, by a quasicrystal. Related to this is the problem of
finding the Delone tiling for the same quasilattice/quasicrystal which we consider now. Our
aim is to describe an algorithm that allows one to determine all Delone tiles.

Delone tiles are found in the following way. The process is illustrated in figure 2.
Consider the midpoint c of a configuration of 5 × 5 points of a given quasicrystal �(�)

together with the Voronoi tile V (c). Find the finite set N1 = N1
1 ∪ N0

1 of tiles V (x) for
x ∈ �(�) with non-empty intersection V (c) ∩ V (x) �= ∅. The tiles of N1 are said to be the
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Figure 2. The Voronoi tile V (c) and the cluster of four Delone tiles which have the quasicrystal
point c in common.

first neighbours of V (c). There are two types N1
1 and N0

1 of first neighbours, according to the
dimension of the intersection V (c) ∩ V (x). We call them direct or degenerate neighbours,
respectively.

The points q1, q2, q3 and q4 in figure 2 are the neighbours of c, corresponding to Voronoi
vertex v. It means that the Voronoi tiles V (qi) share the vertex v with V (c), or in other words,
points c, q1, . . . , q4 have the same distance from v. The neighbours q2 and q3 are degenerate.
By definition, the Delone tile of the vertex v ∈ V (c) is formed as the convex hull of exactly
these points, q1, q2, q4 and q4 of figure 2.

Taking vertices of every Voronoi tile one-by-one, finding their direct and degenerate
neighbours, and connecting those to Delone tiles, one builds the Delone tiling. From the
configuration of 5 × 5 quasilattice points, containing c as its midpoint, we get the Voronoi tile
V (c) and the cluster of Delone tiles with c in common.

Between two singular cases V T2i and V T2i+2, the set of local configurations of the size
5 × 5 are the same. This also implies that the set of Delone tiles does not change. Hence,
singular sizes of acceptance window for Delone tilings form a subset of singular sizes for
Voronoi tilings.

There are four sets DTs, s = 1, 2, 3, 4 of distinct Delone tiles for the quasilattices (12).
The correspondence between V Tm tiling sets and the DTs is as follows:

DT1 ←→ V T1 |I | ∈ (τ−1, 4 − 2τ )

DT2 ←→ V T2 |I | = 4 − 2τ

DT3 ←→ V T3 ∪ V T4 ∪ V T5 |I | ∈ (4 − 2τ, 1)

DT4 ←→ V T6 |I | = 1.

(15)

In particular, Delone tilings corresponding to Voronoi cases V T3, V T4 and V T4 are made out
of the same set of tiles DT3. The correspondence between the six cases of sets for Voronoi
tiles and the four cases for Delone tiles is shown in detail in table 1 and graphically illustrated
in figure 1.

4.3. The lists of tiles in V Tm and DTm

Finally, let us describe the sets V Tm and DTm of distinct Voronoi and Delone tiles in
quasilattices (12) for all values of the length |I | of the side of the acceptance window. The
results are summarized in figures 3 and 4. Let us mention that the actual position of the
window does not affect the set of Voronoi or Delone tiles that occur in (12).
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

V T1 • • • • • • • • • •
V T2 • • • • • • • •
V T3 • • • •∗ • • • • • • •
V T4 • • • •∗ • • • • • •
V T5 • •∗ • • • • • • • •
V T6 • • • •

Figure 3. The top part contains a numbered list of all Voronoi tiles encountered in all quasicrystals
with rhombic window—quasilattices. The tiles are shown together with the local configuration of
quasicrystal points which shape them. Shapes and relative sizes of the tiles are maintained. The
lower part indicates the subsets of tiles present in each tiling set V T1, . . . , V Tm. Each tile marked
by a black dot occurs in four orientations given by the symmetries of the acceptance window. Tiles 1
and 14 have two axes of symmetry collinear with the quasicrystal symmetry axes and hence their
four orientations coincide. Tiles 5, 9, 10, 11 have one symmetry axis collinear with the quasicrystal
symmetry and hence occur in two different orientations only. Tile 8 is exceptional in that it occurs
in eight different orientations in the cases denoted by an asterisk.

Figure 3 shows the shapes and relative sizes of all Voronoi tiles that may possibly occur
in a quasilattice. Within a given Voronoi tile, we can see the position of the lattice point, and
the picture also shows all the direct neighbours of the point.

In row 1 of the table in figure 3 individual tiles are numbered. Other rows of the table
indicate the occurrences of the tiles in each case of V Tm sets. H2-symmetry of the Z[τ ]-
module M together with the symmetries of the rhombic acceptance window ensure that tiles
occur together with their symmetric copies. We now describe those symmetries.

The acceptance window is a parallelogram symmetric with respect to reflections in its
diagonals; the Z[τ ]-module M has the same symmetries. Denote the reflection in the longer
diagonal by R1 and the reflection along the shorter diagonal as R2. By the star map one
can verify that the symmetry transformations of m and the acceptance window ensure the
symmetry of the quasicrystal with respect to the reflections along the bisections of both angles
between α1 and α2. It is illustrated in figure 5.
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1 2 3 4 5 6 7 8

DT1 • • • • • • •∗∗ •
DT2 • • • • •∗∗ •
DT3 • •∗ • • •∗∗ •
DT4 • • • •

Figure 4. The table provides information analogous to that of the table in figure 3 for Delone
tilings. There are exceptional tiles 4 and 7. The first case, denoted by ∗, consists in tile 4 occuring
in tiling in eight orientations for the case DT3. The second case, ∗∗, consists in tile number 7
occuring in tiling in six orientations for cases DT1,DT2 and DT3.

Figure 5. Reflection symmetry axes of a rhombic window of the quasilattice (12). An example of
division of the window into regions where all points x∗ with Voronoi tiles V (x) of the same size
and shape are found (on the left). Transformations of a Voronoi tile under the symmetries of the
acceptance window (on the right).

The symmetry group G(�) of the window is of order 4. Through the star map, it also
acts on the quasicrystal. Therefore a tile V occurs at most in four orientations, V,R1V,R2V

and R1R2V , given by the action of elements of the group. If the symmetry group of a tile is a
subgroup G(V ) of G(�), the number of distinct orientations of V is given by |G(�)|/|G(V )|.
Thus tiles 5, 9, 10 and 11, which are invariant under exactly one of the reflections R1 or R2,
occur in two orientations in a tiling. Tiles 1 and 14 are invariant under both reflections and
hence they occur only in one orientation. Tile number 8 has a symmetry group of order 2.
Nevertheless the tile occurs in eight orientations in lists V T3, V T4 and V T5 because its
symmetry group is not a subgroup of G(�): its reflections have different orientations from
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those in G(�). More precisely, there are two isomorphic, but differently oriented, copies of
tile 8, neither of which has orientations corresponding to R1 or R2. Each of the two copies
gives rise to four tiles of shape 8.

4.4. The density of tiles in a quasilattice

In addition to the set of Voronoi tiles, we can gather more information about the position of
individual Voronoi polygons in the acceptance window.

Consider a quasilattice �(I × I). With each Voronoi tile V of �(I × I) one can identify
a region of the acceptance window. The area of that region is proportional to the density of
the tile in �(I × I).

We have seen in section 3 that I can be written as the union of subintervals I1, I2, . . . , Im,
each containing the star map of points of �(I) with identical first and second neighbours.

Let i, j ∈ {1, . . . ,m} and choose a point x ∈ �(�) such that x∗ is in the rhombus with
sides Ii and Ij ,

x� ∈ Iiα
∗
1 + Ijα

�
2.

Any other point y ∈ �(�) such that y∗ ∈ Iiα
∗
1 +Ijα

�
2 has the same Voronoi tile. It follows

from the fact that x and y are surrounded by the same configuration of 5 × 5 points in the
quasicrystal �(�). Their coordinates on axes α1 and α2 belong respectively to Ii and Ij . Thus
the acceptance window—rhombus � = I × I—is divided into rhombuses that correspond to
the different Voronoi polygons, star map images of Voronoi tiles.

These divisions of acceptance window are drawn in figures 6 and 7. In each region there
is a number which denotes a corresponding tile from the table in figure 3. Note that symmetry
of a tile under reflection R1 or R1 is equivalent to the fact that the corresponding region in the
acceptance window lies on a diagonal.

Classification of quasilattices according to types of Delone tiles is also given in the table
of figure 4 using the same conventions.

Figures 8 and 9 show Voronoi and Delone tiling of two cases of quasilattices. They
illustrate a singular case with a low number of tiles (|I | = 1), and a non-singular case with a
high number of tiles.

5. Voronoi clusters for quasicrystals with general acceptance window

In this section we want to describe how the sets VT and DT can be found for quasicrystals
with an acceptance window � of general shape, assuming that it has a non-empty interior and
a one-dimensional integrable boundary.

There are three ingredients of the present procedure where our results about the
quasilattices are indispensable: (i) we know the covering radii Rc for quasilattices; (ii)
points and local configurations of a quasilattice can be generated easily (unlike for a general
quasicrystal); (iii) search for the required local configurations in a general quasicrystal uses
the configurations in quasilattices.

First we take the smallest and the largest rhombic windows �1 = I1α
�
1 + I1α

�
2 and

�2 = I2α
�
1 + I2α

�
2 with the property

�2 ⊆ � ⊆ �1

which implies

�(�2) ⊆ �(�) ⊆ �(�1).
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Figure 6. Division of rhombic acceptance windows for cases V T1, V T2 and V T3. The numbering
of the regions corresponds to the numbering of Voronoi tiles in the table of figure 3. Due to the
symmetries of the acceptance window it suffices to show a triangular segment. Non-singular cases
V T1 and V T3 are represented by the side lengths d = 12 − 7τ and d = 17 − 10τ .

Thus the points of the quasicrystal �(�) form a subset of the quasilattice �(�1). Since
�(�1) generally contains more points than �(�), we call �(�1) a dense quasilattice and its
points will be marked by empty circles, ◦. All points from �(�2) are contained in �(�) and
also in �(�1). Therefore we call �(�2) the sparse quasilattice. Points of �(�2) will be
marked by black dots, •.

The quasicrystal �(�) has finite covering radius Rc because it is a Delone set. There
are finitely many distinct local configurations of size 2Rc in �(�1). Therefore there could be
only finitely many configurations of that size in �(�). This fact implies that there are only
finitely many Voronoi tiles in the tiling of �(�).

Our starting setup is as follows. We have embedded the quasicrystal �(�) into the
quasilattice �(�1), whose points are marked by either ◦ or •. We know that the points marked
by • are contained in �(�). In addition �(�) contains some other points ◦ from the dense
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Figure 7. Division of rhombic acceptance windows for cases V T4, V T5 and V T6. The non-singular
case V T5 is represented by the side length d = 9 − 5τ .

quasilattice �(�1). Subsequently in this paper, the point set �(�1), decorated as ◦ and •,
is called a skeleton. An example of a skeleton quasilattice and the configuration of �1,�2

and � are illustrated in figure 10.
Our main problem is to find all Voronoi and then Delone tiles from the tilings of �(�).

As in the previous section, one needs to know the covering radius of �(�) or at least an upper
bound for it. Since all points of the quasilattice �(�2) are elements of �(�), the covering
radius of �(�) is smaller or equal to the covering radius of �(�2). The covering radius of a
quasilattice is given by proposition 4.1. We denote this upper bound by Rc.

In order to find all Voronoi tiles in the tiling of �(�), we have to determine all different
configurations of points of �(�) which fit into the ball of radius 2Rc. The first step is
identification of local configurations of size 2Rc in the skeleton.

Intervals I2 ⊆ I1 define the skeleton in one dimension. The two-dimensional skeleton,
given by �1 and �2, is the Cartesian product of one-dimensional ones. Therefore the clue
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Figure 8. Example of a nonsingular Voronoi and Delone tiling: a quasilattice whose acceptance
window has the side length d = 17 − 10τ . It represents the cases V T3 and DT3.

is to find all finite sections from the one-dimensional skeleton given by I1 and I2 of length
n, where n is to be determined. We denote by Ln(I1, I2) the set of all different words from
skeleton given by I1 and I2 of the length n measured in spaces of �(I1). An algorithm for that
is given in [28]. We proceed with the following steps:

(1) Embed a disc of the radius 2Rc into rhombus orientated along the axes α1 and α2. Let l
be the length of the side of this rhombus.

(2) Find n ∈ N so that the length of the sequence of quasicrystals points, corresponding to
every word from Ln(|I1|), is at least d/2. This could be done by estimating the worst
case. More precisely, it is sufficient to consider the word consisting of only the smallest
possible spaces, avoiding the forbidden strings as named in formula (13).

(3) Compute the set of all different words L2n(I1, I2).
(4) Every word from L2n(I1, I2) is composed of 2n spaces. Now assign to the central point

the coordinate 0 and compute the coordinates of the remaining points according to the
spaces between them. Save the list of sequences as Q.

(5) Compose the set Ñ of configurations in R2 from the skeleton:

Ñ = {q1α1 + q2α2 | q1, q2 ∈ Q}.
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Figure 9. Example of a singular Voronoi and Delone tiling: a quasilattice whose acceptance
window has the side length d = 1. It represents the cases V T6 and DT4.

Figure 10. Example of a skeleton quasilattice. The acceptance windows �1,�2 and � are shown
on the left. A fragment of the corresponding skeleton quasilattice composed of quasilattices �(�1)

(empty and black circles) and �(�2) (black circles) is shown on the right.

Each point from any configuration from Ñ is flagged by ◦ or • according to the following
rule. The point is marked by • if both corresponding coordinates on axes α1 and α2 are
also flagged by •, otherwise the point is flagged by ◦.
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(6) Trim each configuration from Ñ by the disc of radius 2Rc centred at the origin. Finally
remove duplicate configurations.

In Ñ one finds all local configurations of required size from the two-dimensional skeleton
given by �1 and �2. For any Voronoi tile V (x) of �(�), one finds in Ñ the configuration
containing points N1(x) together with the centre point x. The points from N1(x), however,
may be marked by ◦ or • in this configuration. Thus before we move to the final step, we
construct a superset of Voronoi tiles which certainly contains all Voronoi tiles from the tiling
of �(�). This superset is constructed using Ñ as follows.

(7) To each configuration from Ñ create a set of configurations that are composed by origin,
points marked by • and all possible combinations of points marked by ◦; that is, if the
number of points marked by ◦ is k we obtain 2k possibilities. Save all these configurations
to N .

(8) From each configuration from N construct the Voronoi tile around the origin. Thus with
each configuration from N we associate a Voronoi tile.

(9) Delete all points in each configuration except the origin and the neighbours N1
1 of the

associated Voronoi tile.
(10) Remove duplicate Voronoi tiles and their configurations from N .

After these steps, each configuration in the list N corresponds to a different Voronoi
tile. Therefore we can use ‘configuration from N ’ and ‘Voronoi tile’ as synonymous without
ambiguity. In step 7 a very large list of configurations has been created. Then in step 10 it
was purged.

In the list N , there are many Voronoi tiles that do not occur in the Voronoi tiling of �(�).
So far we have not taken into account the particular shape of the acceptance window � under
consideration. In fact the list N also contains, besides the Voronoi tiles of �(�), Voronoi
tiles appearing in every other quasicrystal �(�̃) whose acceptance window �̃ satisfies the
inclusions �2 ⊂ �̃ ⊂ �1.

At the next step, we discard all configurations in N but those with the star map image in
the given acceptance window �. Let V be a configuration from N , and let q1, . . . , qm ∈ �(�)

be the positions of the neighbours that shape V . Actually q1, . . . , qm ∈ N1
1 are already stored

in N in this configuration. Thus we want to find all positions of the images c∗ of the centre
point c of V = V (c) such that images of neighbours lie in the acceptance window. We require
that

c∗ ∈ � and c∗ + q�
j ∈ � for j = 1, . . . ,m (16)

which is equivalent to the condition

c∗ ∈ � and c∗ ∈ � − q�
j for j = 1, . . . ,m.

Therefore c∗ has to be situated in the intersection of all � − q�
j . More precisely,

c∗ ∈ �|V def=

 m⋂

j=1

(� − q�
j )


 ∩ �. (17)

Geometrically �|V is an intersection of a few shifted copies of �. If �|V is empty, the
tile V (c) does not occur in the Voronoi tiling of �(�). A non-empty �|V is a region in �

which contains images of the points c such that

c ∈ �(�) and c + qj ∈ �(�) for j = 1, . . . ,m.

The condition that �|V is non-empty is necessary but not sufficient for the tile V to be present
in the tiling of �(�).
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Figure 11. Example of two overlapping regions in the acceptance window (on the left), each
corresponding to a different Voronoi tile (on the right). The intersection of the regions is shown
together with its Voronoi tile, which has the form of the overlap of the two Voronoi tiles. This
figure represents a real case for circular acceptance window �.

The sufficient condition will be found by considering the frequently arising situation of
an overlap of two regions �|V corresponding to different Voronoi tiles. Such a situation is
illustrated in figure 11. Which Voronoi tile does then actually correspond to the points in the
intersection? Detailed consideration of the question is rather tedious, but it leads to a simple
geometrical answer [28]. Suppose that two overlapping regions contain images of points of
two different tiles, say, V1 and V2. Then any point, say p∗, found in the intersection, is the
image of p ∈ �(�) whose Voronoi tile V (p) is the ‘intersection’ of tiles V1 and V2. More
precisely, V (p) is the intersection of the two tiles after they have been placed one on top of the
other, their respective quasicrystal points coinciding, and orientations preserved. It follows
that among several candidates for a Voronoi tile of a point p, V (p) is the one with smallest
area.

In order to obtain a picture of the division of the acceptance window � into regions
corresponding to different tiles, it is practical to complete the algorithm by the following
steps:

(11) For each Voronoi tile V ∈ N , test whether �|V is empty or not. If it is empty remove V

from N .
(12) Sort Voronoi tiles in N according to their area in decreasing order.
(13) Draw �|V for each V from N one by one, then delete such V from N for which �|V is

completely covered by other regions.

Upon completion of the last step, N became the list of Voronoi tiles VT of �(�). Step
13 implies that the region (V ), which corresponds to Voronoi tile V , is given by

(V ) = �|V\
⋃

{�|Ṽ where |Ṽ | � |V |}. (18)

It will be shown in [13, 14], for the case of a circular and decagonal window, that it is
advantageous to draw the acceptance window and its division according to steps 11–13, and
then visually check which subregions are covered and which are not. The regions not covered
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at the end represent the set of Voronoi tiles that occur in the Voronoi tiling of �(�), i.e. which
are represented in VT .

For a description of all steps of an implementation of this algorithm see [28].
As in the previous section, we now consider the problem of finding all Delone tiles of DT

from the Delone tiling of �(�). The solution is analogous to that presented for the case of
quasilattices. The main difference is in step 9, where we do not delete degenerate neighbours
from N0

1 . Thus after step 10, there could be multiple different configurations in the list N
which correspond to one Voronoi tile. The rest of the steps remain unchanged except for
step 12. In the present problem, there could be multiple Voronoi tiles with minimal area.
Since we want to have Voronoi tiles with a large number of neighbours on the top (when the
acceptance window and its division are drawn), an additional ordering rule is added to step 12:
if two Voronoi tiles have the same area, the Voronoi tile with the larger number of neighbours
is the second one to be drawn.

After all the steps are performed, we obtain the same division of the acceptance window
� as in the previous case, except that some of the subregion (V ) may be further divided into
smaller parts. These parts correspond to the same Voronoi tile but different configurations of
degenerate neighbours. A Voronoi tile V in the final list N may subsequently occur here in
a few variations depending on the degenerate neighbours. But that was the main purpose of
this modification. Now we know all Voronoi tiles together with all possible configurations of
degenerate neighbours. Thus the rest of our task is to construct, around each vertex of every
Voronoi tile, a Delone tile according to the algorithm of the previous section. This process
gives us the complete list DT of Delone tiles from the Delone tiling of �(�).

6. Concluding remarks

(1) It appears to be a general fact, independent of the shape of the window considered here,
that there are fewer DT tilings than V T ones. Similarly, for a circular window (any radius)
there are 22 sets of V T and 8 sets of DT [13]; for the regular decagon as the quasicrystal
acceptance window, we have determined that there are 11 V T tiling sets and 4 DT ones,
see [14]. An exhaustive description of the theory and computing procedures involved in the
method presented here, can be found in [28].

(2) Calling the point sets of this paper two-dimensional quasicrystals is an idealization
based on two assumptions (besides the obvious dependence on the form of the acceptance
window). The first one appears to be the more plausible of the two: it is the validity of the
cut-and-project method in general. Our second assumption is on the points we choose to
project, namely the points of the root lattice of type A4. Our justification is the mathematical
simplicity of the classification problem that we want to solve. The price we pay for it is that
we do not find some of the tilings familiar from the literature, in particular any of the Penrose
tilings. (An explicit prescription for the construction of the rhombic Penrose tiling by means
of the cut-and-project method is found in [20].) Somewhat more complicated choices of
points for the projection, still bound to the A4-symmetry, would be so-called holes of the root
lattice or vertices of the Voronoi domains of the root or weight lattices. In physics, the holes
of a lattice are the points most distant from the lattice points. In Lie theory, the lattice is the
lattice of roots (of type A4 in our case), while the holes together with the root lattice form the
lattice of A4-weights. The four types of A4-holes are precisely the four non-zero congruence
classes of A4-weights (see for example [10]).

(3) Application of the method to cut and project point sets with other quadratic
irrationalities than τ , is fairly straightforward for the series of quadratic Pisot numbers
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given by the solution of algebraic equations x2 = mx ± 1 in [12]. The present case,
equation x2 = x + 1, is the lowest member of that series.

(4) With the classification of tiles completed, it is possible to answer a number of related
questions, which occasionally may be of independent interest:

• What are the lengths of tile edges in a given quasicrystal? What are their relative densities
as functions of the size of the window?

• What are the relative densities of various tiles? Which tile has the maximal density?
What is the value of the size of the window, where the highest density is achieved?

• Putting several adjacent tiles into a cluster, can just a few clusters be formed so that they
provide a tiling of the entire plane R2? Examples of such a possibility are known from
Penrose tilings.
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